
Milkomeda Rollup

Zeta Avarikioti, Makis Arsenis,

Dimitris Karakostas, Orfeas Thyfronitis-Litos

December 2022

1 Introduction

Milkomeda aims to provide EVM functionality to blockchains that do not pro-
vide this functionality via executing a rollup on top of such blockchains. The
following exposition proposes a design proposal for this project. In a nutshell,
the goal is to use the underlying blockchain, e.g., Algorand or Cardano, for
data availability and the election of the operators of the rollup and move all
the execution from the chain to the rollup. To do so in a secure manner, three
protocols are necessary:

• Validator election: Determines the entities, namely the validators, that
are responsible for sequencing the data and publishing it on the chain.
The validators also are responsible for determining the state in which a
party can exit the rollup.

• Sequencer election: Determines which one of the validators is respon-
sible for publishing the rollup data at any point in time.

• Safe exit: Determines how a participant can exit the rollup.

In the following sections, we first explain the model and security goals (Sec-
tion 2). Then, we propose specific solutions and corresponding sketch proofs
under the assumptions stated in the model, as well as discuss possible alterna-
tive solutions and trade-o↵s. In particular, we describe and analyze our proposal
for the validator election in Section 3. Subsequently, we present the sequencer
election protocol in Section 4, and we conclude with Section 5 where possible
safe exit protocol designs are investigated.

1

2 The model

2.1 Assumptions

System model. Parties can lock their money in the Milkomeda rollup in order
to continue the execution o↵-chain thus gaining access to functionalities that
are not available on-chain (EVM). These parties will be referred to as clients.
For the secure operation of the rollup, parties can volunteer to participate as
validators. The validators lock stake in the rollup contract and are responsible
for the correct protocol execution, i.e., data is published timely on-chain and
clients can exit the rollup in the correct state.

The protocol proceeds in (asynchronous, event-based) rounds that are de-
termined by the underlying blockchain – one block on L1 defines one round. s

consecutive rounds determine an epoch.

Network model. We assume a partially synchronous communication model
as the rollup is intended to operate on blockchains that also remain secure
under this network model such as Algorand. This means that there is a fixed
upper bound on the communication delay but this is unknown to the protocols.
Equivalently, we can assume arbitrarily long periods of asynchrony – during
which the protocols must remain safe – followed by long enough periods of
synchrony (after GST which is unknown) – during which the protocols shall
make progress.

Cryptographic assumptions. We make the usual cryptographic assump-
tions, that secure communication channels, digital signatures, and PKI exist.

Threat model. We assume the adversary respects the cryptographic and net-
work assumptions, meaning she cannot break cryptography and she can reorder
messages but cannot drop them. Furthermore, the adversary may control up
to 1/3 of the validators, as well as any client. Lastly, we assume the adver-
sary is slowly adaptive with respect to the validators, i.e., within an epoch the
adversary is static, that is, she can choose which validators to corrupt at the
beginning of an epoch but cannot change the corruption set on the fly within
the epoch.

Incentives. Our goal is to eventually design protocols that are secure under
rational participants, that is, both validators and clients act in order to maximize
a utility function, i.e., their profit. In this model, clients and validators are
allowed to collude with each other.

2

2.2 Desired properties

In this section, we determine what security means for the Milkomeda rollup
under the aforementioned model.

• Liveness: Any transaction submitted on the rollup becomes stable, i.e.,
is executed on the rollup by an honest client, within u blocks, where u is
the liveness security parameter.

• Bridging: Any participant of the L1 can enter or exit the rollup upon
request within w blocks, where w is a security parameter, according to the
state that an honest rollup client reports.

Bridging encompasses the safety of the rollup. It expresses that no party
loses money, i.e., any transaction that is executed on the rollup will remain
confirmed at any future time. Bridging also implies that any party that wishes
to exit the rollup will leave it in the state that corresponds to the sequence of
relevant transactions, meaning the rollup parties will not gain or lose money
when bridging to the blockchain.

Bridging, in addition, encompasses a liveness notion, as for the rollup to
be functional and make meaningful progress, parties must be able to join and
leave on demand. Liveness, on the other hand, expresses that the rollup ledger
will make progress, thus transactions submitted in the rollup will be eventually
executed. Note that both liveness and bridging security parameters can be
expressed in time units when the network is synchronous. However, the L1
may be operating in partial synchrony (e.g., Algorand), in which case we have
no liveness guarantees. For this reason, we express the liveness and bridging
security parameters for the rollup in blocks.

Our approach. To show the desired properties, we will first determine the
individual protocols and their corresponding desiderata, and subsequently, we
will prove the three desired properties: liveness and bridging for the composition
of the protocols. In particular, the proposed design enables a clear separation
of liveness and bridging hence we will first show that during an epoch the rollup
remains live (Sections 3,4) and later we will show that at the end/beginning
of each epoch bridging is satisfied (Section 5). We will show the desiderata
hold under an honest supermajority of stake, and then examine under which
conditions or assumptions we can relax the honesty assumption and prove the
desiderata under rational parties.

3

3 Validators Election

In this section, we isolate the validator election process from the rest of the
protocol and treat it initially as a separate component. We propose a novel
proof-of-stake auction for the validator election. In particular, we first define the
setting and then determine the desired properties for a proof-of-stake auction,
i.e., an auction that correlates the staked amounts to validator slots that operate
the rollup. Finally, we present a novel auction mechanism and prove it satisfies
our desired properties.

3.1 Setting

There exist n parties [P0, . . . , Pn]. Each party Pi holds an amount Si (stake)
which is publicly known at the start of the execution to all other parties.1

The execution comprises “epochs”. Each epoch consists of e slots where each
slot corresponds to the generation of a block in the underlying L1.2 At the end
of each epoch, an auction takes place to map the e slots of the next epoch to
the parties. In particular, the aim of the auction is to allocate one party to each
slot in a fair manner according to the parties’ stakes. We will also refer to slots
as items, the number of which is denoted by I; we have I = e.3

All parties that are awarded at least one slot via the auction are eligible to
take part in two mechanisms:

i) the safe exit protocol which enables clients to exit the rollup – in other
words, an L2 to L1 bridge. Participation in the safe exit protocol may yield
rewards if the party acts correctly, or slash its stake if the party misbehaves.

ii) the sequencer election protocol, where each party assigned in a slot, namely
the sequencer, is collecting and publishing on-chain the rollup data. A
correct sequencer is rewarded with revenue r.

Note that all rewards are assigned at the end of the epoch and are given in the
native currency, i.e., the Milkomeda token.

Locking the stake & delegation. Before each auction, a party can choose
one of the following participation options: i) participate in the auction directly;
ii) delegate their participation rights to another party;4 iii) not participate in
the auction at all.

If a party chooses to participate, either directly or via delegation, their funds
(stake) are temporarily locked (at least until the end of the auction).

1For simplicity, we assume that Si is fixed throughout the execution.
2Each slot may correspond to one L1 block or any pre-specified constant number of L1

blocks, i.e., the elected validator may have 5 blocks time to publish its batch.
3We maintain the di↵erent notation because the auction mechanism is of independent value

and does not need to correlate to the epoch length.
4A party can choose multiple delegates and split its stake arbitrarily among them. If

a delegator has been delegated some stake as well, its delegated stake is redelegated to its
delegees – i.e., delegation is transitive.

4

After the stakeholders lock their stake, each party Pi is associated with an
amount of stake that is either 0 if the party opted with delegation or equal to the
sum of the delegated stake to this party. We abuse the notation Si to express
the total amount of stake with which the party Pi participates in the auction,
including the delegated stake to Pi. With si we denote the proportional stake
Pi owns, that is si = SiPn

j=1 Sj
, where n is the parties that participate in the

auction – i.e., excluding the delegators.5

Auction characteristics. The auction has the following characteristics: i) a
number I of indivisible, identical items (i.e., the slots) is auctioned; ii) each
party6 can bid an amount Bi Si for acquiring items; iii) each party can only
bid once and its bid is committing (e.g., locks an amount of funds on-chain);
iv) each bid becomes public instantly.

Identical items. For simplicity, we assume that all slots in an epoch are iden-
tical. This assumption is very strong as the order of slots is, in fact, critical
for the liveness of the rollup. If the adversary manages to acquire more than u

consecutive slots – via biasing the randomness or successful grinding attacks –
he may e↵ectively censor transactions in the rollup, violating the liveness prop-
erty. In this case, the bundle of consecutive slots will infinitely increase the
utility of the adversary. To address these attack vectors without incorporating
them into the utility function, we later introduce a property for the auction,
namely unpredictability, that guarantees that any PPT adversary cannot bias
or predict the auction outcome in a meaningful manner. Due to this property,
we can assume that the items of the auction are identical.

3.2 Auction Properties

The overarching goal of the allocation mechanism should ensure that the parties
are allocated a fraction of the slots that is on average equal to their staking
percentage. Towards that end, definitions 1, 2, 4, 5 and 6 distill the necessary
properties that the slot auction mechanism should satisfy.

First, market clearance guarantees that all items are allocated to parties.
In the validator election setting, this ensures that each slot will be assigned
a validator. Second, symmetry guarantees that the items will be allocated
solely based on the stakes of the parties and not their public keys. Third,
unpredictability ensures that an adversary cannot predict the outcome of the
auction beforehand, and thus cannot grind on potential keys and/or divisions
of its stake that may result in acquiring consecutive slots (liveness attack).
Finally, Sybil and collusion resilience guarantee that the auction mechanism is
not vulnerable to Sybil and collusion attacks, respectively. Intuitively, a party
cannot increase its allocated items by combining its stake with other parties

5We also abuse the notation n as it was initially defined as all the parties. We do so, in
order to avoid the use of unnecessary notation.

6Each party refers to an address, not an entity; each entity may have multiple addresses.

5

(collusion-resilience) or splitting its stake across multiple “fake” identities (Sybil-
resilience).

An allocation rule is an algorithm A that, given as input the stake percent-
ages of the parties s = {s1, s2, . . . , sn} 2 R and a random seed r, returns a
two-dimensional matrix of random variables Yi,j that denotes the allocation of
the items. In particular, Yi,j = 1 if item j 2 I is allocated to validator Pi.

Definition 1 (Market Clearing). The allocation rule should allocate exactly I

items,
P

8i
P

8j Yi,j = I.

Definition 2 (Symmetry). An allocation rule is symmetric if for every per-

mutation ⇡ on any stake distribution s resulting in Y
0
, it holds Pr[Yi,j = 1] =

Pr[Y 0
⇡(i),j = 1].

A symmetric allocation rule also ensures that two parties with the same
stake win a slot with the same probability.

Definition 3 (Slot Symmetry). An allocation rule is slot-symmetric if any two

slots are equally likely to be allocated to a party: 8Pi, 8j 6= j
0
2 I, Pr[Yi,j = 1] =

Pr[Yi,j0 = 1].

Corollary 1. A symmetric allocation rule of identical items is also slot-symmetric.

Definition 4 (Unpredictability). Before the allocation of the auction on-chain,

any PPT adversary must not be able to distinguish between two (plausible) al-

locations that are sampled from the same stake distribution. Formally, given

any pair of allocations Yi,j and Y
0
i,j with k

�P
i(Yi,j � Y

0
i,j)

�
j
k1 < ✏, an adver-

sary cannot distinguish between the two outcomes with probability greater than

1/2� f(✏).

Definition 5 (Sybil Resilience). For every stake distribution s and every stake

distribution s0 that can be derived from s by replacing a party Pi with stake

percentage si by a set P
0
of parties with total stake percentage at most si, the

total expected items allocated to the parties P
0
(denoted by Y

0
) is at most that

of party Pi in the initial stake distribution (denoted by Y):

X

i2P0

X

j2I

Y
0
i,j

X

j2I

Yi,j

Definition 6 (Collusion Resilience). For every stake distribution s and every

stake distribution s0 that can be derived from s by replacing a set P of parties by

a new party Pi0 with stake percentage at most si0
P

i2P si, the total expected

items allocated to the party Pi0 under s
0
(denoted by Y

0
) is at most the total

expected items of the parties P
0
(denoted by Y):

X

j2I

Y
0
i0,j

X

i2P

X

j2I

Yi,j

6

Proving that a mechanism is symmetric and market clearing is typically a
direct result of the definitions. However, proving that the mechanism satisfies
Sybil resilience and collusion resilience can be significantly trickier. To make
the analysis more straightforward, we define a third property, fairness (Defini-
tion 7). Intuitively, fairness guarantees that each individual party is allocated
their fair share of items, which is equal to their stake percentage. Following
closely the results of [CPR19], Lemma 1 shows that fairness is equivalent to
Sybil and collusion resilience in any symmetric and market clearing mechanism.
Therefore, to guarantee Sybil and collusion resilience, it su�ces to show that
a mechanism allocates to each party an average number of items equal to its
staking percentage.

Definition 7 (Fairness). The mechanism should allocate to party Pi on expec-
tation si · I items.

Lemma 1. A market clearing allocation mechanism (cf. Definitions and 1) is

symmetric, Sybil resilient, and collusion resilient (cf. Definitions 2, 5 and 6) if

and only if it is fair (cf. Definition 7).

Proof. The proof of the lemma is similar to the proof of the uniqueness of the
proportional allocation rule for block rewards presented in [CPR19] (Theorem
1). It is straightforward to adapt the proof to show that any allocation mech-
anism is fair if and only if it is market clearing, symmetric, Sybil-resilient, and
collusion-resilient.

Sybil and collusion resilience (and its equivalent, fairness) is a core prop-
erty to guarantee proportional representation and, eventually, security against
adversarial takeovers. However, requiring the expected items per party to be
equal to their power is not necessarily enough to make the allocation mecha-
nism appealing. For instance, consider Bitcoin’s reward allocation mechanism.
In Bitcoin, a party produces a block on each round of execution with probability
proportional to its power. Thus, on expectation in the long term, each party
produces a proportion of blocks equal to their power. However, in the short
term, a party with small power will typically not produce any blocks. This is
particularly problematic when considering temporal discounting [RL11], that
is the tendency to disfavor rare or delayed rewards. In Bitcoin, this arguably
translates into the formation of mining pools, which promise slightly lower, but
more frequent, rewards to smaller miners.

In our setting, to make the allocation more appealing, we define the concen-
tration property (Definition 8). This property sets a lower limit to the number
of items each party is allocated per auction, which is equal to the floor of its
(stake-based) proportion. For instance, if a party controls 1.7% of power, it
should receive at least 1% of all items in all cases — and possibly more items
with some probability. Consequently, the income rate (in terms of items) for
each party is steadier and the variance depends only on the decimal part of its
stake percentage. Nonetheless, we will treat concentration as optional, since it

7

is not a prerequisite for preventing a malicious party from acquiring a dispro-
portionate amount of items (in the scope of the entire execution).

Definition 8 ((Optional) Concentration). The mechanism should allocate to

party Pi at least bs · Ic items.

A correlated notion that captures the behavior of miners in the Bitcoin net-
work is risk-neutrality and risk-averseness. In the former, the miners’ utility
is proportional to their expectation of rewards, while in the latter, the miners’
utility is a strictly concave function of the expected rewards. However, this ap-
proach rules out the proportional allocation rule for risk-averse parties [CPR19].
In contrast, our concentration property captures the desired behavior of bidders
and at the same time allows for a more flexible design space.

To summarize, the properties our allocation mechanism must satisfy are: mar-

ket clearance (Def. 1), unpredictability, (Def. 4), fairness (Def. 7), and concen-

tration (Def. 8). We will also show, slot-symmetry (Def. 3) as we will need it
in the next section.

3.3 Proof-of-stake auction

In this section, we present our solution that consists of two components:
(a) a functionality that maps a vector of reals to a vector of integers with the
same expectation on the sum and a corresponding algorithm that implements
it; (b) an allocation algorithm that distributes the items to the bidders such
that the desired properties are satisfied.

Random Sampling Functionality (RSF) F(x) An RSF is a function that,
given n non-negative real numbers xi which sum to a positive integer x =Pn

i=1 xi 2 Z+, outputs a random vector of non-negative integers V 2 Nn, such
that: i) E[Vi] = xi, and ii)

Pn
i=1 Vi = x.

Allocation Algorithm A The inputs to A are as follows:

• I: the number of items;

• n: the number of parties;

• si: the stake percentage of party Pi , s.t.
Pn

i=1 si = 1.

A operates as follows:

1. Deterministically allocate bsi · Ic items to each bidder Pi. Let x = I �Pn
i=1 bsi · Ic be the remaining, unallocated items.

2. Call a Random Functionality F sub-routine with input a vector x of n
values, where xi = si · I � bsi · Ic. For each value Vi in the output of F ,
assign Vi extra items to bidder Pi.

8

Interval Sampling Algorithm We now realize the random functionality F

via the following algorithm S. The input to S is (as with F):

• x: a vector of n real numbers [x1, x2, . . . , xn].

S operates as follows:

1. Consider an interval of the real line which consists of the concatenation of
n intervals each of length xi. In other words, split the interval [0, x], where
x =

Pn
i=1 xi, into n parts like I1 = (0, x1], I2 = (x1, x1 + x2], . . . , In =

(x� xn, x].

2. For each integer j 2 {1, . . . , x}, sample Pj uniformly at random on the
interval (0, x].

3. Let Yi,j be the indicator random variable of the event that Pj 2 Ii.

4. Define Vi =
Px

j=1 Yi,j for all i 2 [n].

5. Output V = (V1, V2, . . . , Vn).

Lemma 2. The interval sampling algorithm S implements a random sampling

functionality F .

Proof. For every sample Pj , the probability of sampling a number on the i-th
interval at any stage is exactly xi/x. Therefore, by linearity of expectation, for
each vector position i it holds that:

E[Vi] =
xX

j=1

E[Yi,j] =
xX

j=1

Pr[Yi,j = 1] =
xX

j=1

xi

x
= x ·

xi

x
= xi

so the first RSF condition holds.
Regarding the second RSF condition, for the entire vector V it holds:

nX

i=1

Vi =
nX

i=1

xX

j=1

Yi,j =
xX

j=1

nX

i=1

Yi,j =
xX

j=1

1 = x

Random seed (r). Our allocation mechanism needs some source of random-
ness to realize the Interval Sampling Algorithm. We propose to use the under-
lying blockchain to acquire a shared random seed among the participants. In
particular, we propose that r is set as the VRF solution included in the block
generated exactly after the end of the auction. The reason we chose this value
is that it is unbiasable and unpredictable by any participant in the auction.

9

3.4 Analysis

We now prove our proposed solution described in Section 3.3 satisfies the desired
properties of Section 3.2.

Theorem 1. Algorithm A satisfies the market clearing property (Definition 1).

Proof. The number of items that the algorithm allocates is as follows.
First, A by definition allocates x =

Pn
i=1bsi · Ic items.

Second, A calls the random functionality F(x) with input the remaining
items y = I �

Pn
i=1bsi · Ic. By definition of F , i.e., since

Pn
i=1 Vi = x, these

are all allocated.
Therefore, in total x + y =

Pn
i=1bsi · Ic + I �

Pn
i=1bsi · Ic = I items are

allocated by A.

Theorem 2. Algorithm A satisfies the unpredictability property (Definition 2).

Sketch proof. The unpredictability of the algorithm depends solely on the se-
lection of the random seed r. Assuming that the auction participants have no
influence on the underlying blockchain, hence they cannot a↵ect the random
values produced by the L1, the random seed is unpredictable and unbiasable
because it is produced after the bids are placed and it is not a↵ected/correlated
with the operations of the L2.

We note here, that even if the stakeholders that bid for slots in the rollup
are also validators for the L1, they cannot know in advance the random seed as
the outcome of the VRF cannot be precomputed.

In general, we assume there is always a way to extract from the L1 unpre-
dictable and unbiasable randomness because otherwise, the L1 proof of stake
consensus su↵ers similar problems.

Theorem 3. Algorithm A satisfies the slot-symmetry property (Definition 3).

Proof. Given an unbiasable and unpredictable random seed (Theorem 2), the
algorithm assigns the validators to slots uniformly at random, therefore each
party is assigned to each slot with equal probability. Thus, slot-symmetry is
satisfied in algorithm A – even if the slots are not “identical” items.

Theorem 4. Algorithm A satisfies the fairness property (Definition 7).

Proof. Each party Pi is allocated by algorithm A the following items.
First, it gets bsi · Ic items (deterministically).
Second, it gets (on expectation) si · I � bsi · Ic items.
Therefore, on expectation, on each auction a party Pi is allocated bsi · Ic+

si · I � bsi · Ic = si · I, so the fairness property holds.

Theorem 5. Algorithm A satisfies the concentration property (Definition 8).

Proof. The property is satisfied directly by the algorithm’s definition as, in its
first step, allocates bsi · Ic items to each party Pi.

10

4 Sequencer Election

In this section, we leverage the auction designed previously to elect sequencers
for each epoch. We define the desired properties of the sequencer election,
describe the reward mechanism, determine the utility function of the sequencers,
and show that the desiderata are met under rational validators that aim to
maximize their utility.

4.1 The Model

There exist n parties [P0, . . . , Pn] that want to participate in the rollup execu-
tion. The execution comprises “epochs”. Each epoch consists of e slots where
each slot corresponds to the generation of a block in the underlying L1. Each
slot shall be assigned to a party called the sequencer that is responsible for
periodically publishing the rollup data on the L1, typically for a reward. The
sequencers are responsible for the liveness of the rollup.

Each party Pi has a valuation Vi for participating in the rollup; this valuation
expresses the willingness of the party to become sequencer, and its monetary
value depends on the mechanism design, i.e., what “price” does the party pay
to participate as sequencer. We denote the valuation percentage of party Pi by

vi =
ViPn
j=1 Vj

. The parties’ valuations are not publicly known. Instead, what

is publicly known at the beginning of each epoch, are the stakes reported by the
parties: Si and si denote the stake amount and stake percentage of party Pi,
respectively.

Threat model. We consider all parties to be rational, aiming to maximize
their utility function as will be defined later in Section 4.4. We further assume
an adversary may control up to 1/3 of the total valuation of all the parties that
want to participate in the rollup. This means that the adversary may control
more than 1/3 of the sequencers if the mechanism is not truthful, meaning
that the parties report stakes that do not correspond to their true valuation for
participation in the rollup.

4.2 Desired Properties

The sequencers of the Milkomeda rollup are responsible for periodically pub-
lishing the rollup data, therefore for the liveness of the rollup. To ensure the
liveness threshold is not violated, even under our threat model (a hybrid model
of a static adversary corrupting up to 1/3 of the stake valuation while the rest
is rational) we must show the following properties: slot clearance, truthfulness,
egalitarianism, and individual rationality.

Slot clearance ensures that all slots will be assigned a unique sequencer, and
therefore the mechanism has the possibility to always make progress as fast as
possible. Note that this property is not necessary as an absolute; if some slots
are left empty or multiple sequencers are allocated to some slots the protocol

11

may still make progress, just slower. Imposing slot clearance may minimize the
liveness parameter (u) during synchrony. But to guarantee liveness a relaxed
probabilistic notion of slot clearance is strictly necessary (much like chain growth
for the blockchain).

Definition 9 (Slot clearance). The mechanism allocates exactly one party to

each slot.

Truthfulness encapsulates that the parties should report (via bidding) their
true valuations on the rollup participation. Egalitarianism on the other hand,
conveys that parties are awarded fairly according to their reported bids, which
implies that they are elected sequencers proportionally to their bids and that
long-range attacks (e.g., acquiring more than u consecutive slots) are not possi-
ble. Intuitively truthfulness in combination with egalitarianism guarantee that
the stake valuations correspond to uniformly distributed valuation-proportional
slots; meaning that the security threshold on the valuations is transferred to
the number of elected sequencers which are securely distributed in the epoch.
Hence, the adversary cannot gain a stake-disproportional advantage which may
lead to a liveness violation.

Definition 10 (Truthfulness). Parties report their true valuation for the rollup

participation, i.e., Vi = Si, for all i 2 [n].

Definition 11 (Egalitarianism). Parties are rewarded (on expectation) propor-

tionally to their self-reported stake percentage si.

Individual rationality captures that the dominant strategy of a rational val-
idator is to be active during all its slots as a sequencer and help the rollup make
progress by publishing the data on-chain. This property ensures that rational
sequencers will not go idle, enabling the adversary to violate liveness.

Definition 12 (Individual Rationality). Parties benefit from being sequencers,

i.e., the rewards minus the costs of participation should be positive.

The rewards minus the costs are typically expressed through the utility func-
tion of a party. By participation costs we do not mean the operating costs of the
rollup (running the execution and publishing data on-chain); we consider these
costs already calculated in the reward and willingness of parties to take part
in the protocol. Instead, with operating costs we mean any potential monetary
cost incurred by the mechanism, e.g., opportunity costs from long-term locked
stake.

4.3 Sequencer Reward Mechanism

We now describe the exact protocol that realizes the sequencer election. At the
beginning of each epoch, parties publicly lock their stake on the rollup-auction
smart contract; this stake (S) corresponds to their bid. Then, we leverage the
allocation mechanism described in Section 3.3, to elect validators and allocate

12

them to slots. After the auction is over, all parties’ stakes are unlocked, whether
they are validators or not.

During each slot, the corresponding uniquely assigned validator called the
sequencer, is responsible for batching the rollup data and publishing them on-
chain. The rollup data do not have to be valid – the sequencer simply publishes
an order. Hence, a malicious sequencer can only choose which data to include
or stay inactive.

At the end of the epoch, the validators (or sequencers – used interchangeably)
are called to lock up a specific amount of stake for each assigned slot. This
amount is determined via a typical second-price auction (VCG mechanism for
multi-item auctions), in order to guarantee incentive compatibility, i.e., that the
parties will report as their stake-bid their truthful valuation. For each slot, if
the sequencer locks the necessary stake (S0) and promptly published rollup data
within its slot (i.e., in the block the sequencer was assigned to), the validator
will be awarded the sequencer reward r; otherwise, the sequencer will not be
awarded the reward r, even if it acted correctly at its slot.

Apart from receiving the sequencers’ rewards, locking the required stake
at the end of the epoch enables the validators to participate in the safe exit
protocol. Nevertheless, we will not examine this aspect of the mechanism in
this section.

4.4 Utility function

The utility function of a party depends on the following:

• The opportunity cost of the stake to be locked at the end of the epoch, S0.
We denote this opportunity cost for party Pi by q ·S

0
i, where q is a global,

constant factor that expresses the opportunity cost of locking up one unit
of funds for a bounded time period.

• The expected sequencer rewards to be awarded at the end of the epoch,
denoted by r · k, where k is the number of slots during which party Pi

was active. k may be at most equal to the number of slots the party was
awarded from the allocation algorithm in this epoch.

• Whether a validator may acquire more than u consecutive slots, e↵ectively
violating the liveness bound. In this case, we consider the utility of a party
infinite.

In short, the utility of a party Pi is

ui :=

8
>><

>>:

0, if P is not assigned to any slots
r · k � q · S

0
i, if P is active during k slots & locks S0

i at the end of epoch
0, if P did not lock S

0
i at the end of epoch

1, if P is awarded k > u consecutive slots
(1)

13

Unlocking the stake. The auction mechanism should guarantee that the
parties bid truthfully, meaning they lock the maximum amount of stake they
are willing to “maintain” during an epoch for their participation in the rollup.
We note that the stake is not locked during the epoch and thus the opportunity
cost of the stakeholder is very low: the only requirements are to be able to
lock a specific amount per slot at the end of the epoch to collect the rewards,
and of course, that these rewards are more beneficial to the stakeholder than
the operating costs of being a sequencer. We further note that unlocking the
funds encourages much larger participation of stakeholders in the rollup which
significantly enhances the rollup security. Potential drawbacks are discussed
later in Section 4.6.

Utility from participation in safe exit protocol. We do not consider in
this section the dual functionality of validators as both sequencers and safe
exit validators. In particular, in this protocol, we only examine the fair and
randomized allocation of stakeholders in rollup slots. Next, we will show that
these properties guarantee the liveness of the rollup while bridging demands the
design of a safe exit protocol that is incentive compatible and not manipulable
by an adversary. We will address the safe exit in Section 5.

4.5 Analysis

In this section, we prove our proposed sequencer mechanism satisfies the desired
properties under our threat model, and conclude the section by proving the
liveness of the Milkomeda rollup that employs our design.

Theorem 6. The mechanism satisfies slot clearance.

Proof. This property is directly derived from the market clearance property of
the auction mechanism, see Theorem 1.

Theorem 7. The mechanism satisfies truthfulness.

Proof. The parties’ utility can be increased if their locked stake at the end of the
epoch decreases. However, to determine this locked stake, a VCG mechanism
is used. Hence, the stake of a slot does not depend on the bid of this slot’s
sequencer and thus the parties cannot increase their utility by misreporting
their valuation.

Theorem 8. The mechanism satisfies individual rationality.

Proof. To show that parties may only benefit from being active, it is enough to
show that r · k � q · S

0
i > 0. We know that r · k > q · Si, since the mechanism

is truthful (Theorem 7) and the party Pi wants to participate in the auction.
Moreover, from VCG we have that Si � S

0
i, hence r · k > q · S

0
i.

Lemma 3. In a slot-symmetric mechanism, a party with stake percentage si (<

1/3) may be awarded k consecutive out of e total slots with probability (e�k)·ski .

14

Proof. By the slot-symmetry property (Theorem 3), each slot is equally likely to
be assigned to any validator, 8Pi, 8j 6= j

0
2 I, Pr[Yi,j = 1] = Pr[Yi,j0 = 1] = si.

Hence, the probability of a party Pi with stake si to have the consecutive slots
1, 2, . . . , k is ski . Applying union bound to take into account all possible consec-
utive slots, we have that the probability of party Pi to have any k consecutive
slots is (e� k) · ski .

Theorem 9. The mechanism satisfies egalitarianism.

Proof. Suppose our mechanism is not egalitarian, i.e., there is at least one party
Pi that is awarded an amount of rewards that is not proportional to their bid
si. There are two cases: a) the party is awarded less than its fair share, or b)
the party is awarded more than its fair share.

The parties are awarded a reward r per slot they have won in the slot auction
and they were active (see utility function – equation 1). Furthermore, from the
fairness property of the auction (Theorem 4), each party is assigned an average
number of slots that is proportional to their stake. Therefore, if active on all
slots, a party’s expected reward is proportional to their bid si. So case (a) can
only occur if the party was inactive in one or more of their assigned sequencer
slots; contradicts individual rationality (Theorem 8).

For case (b), a party can only increase their rewards more than their fair
share by acquiring k > u consecutive slots from the auction (see equation 1).
By Lemma 3), the probability of a party Pi with stake si < 1/3 to have k

consecutive slots is (e� k) · ski .
Thus, the parties are rewarded proportionally to their self-reported stake

percentage si, and our mechanism is egalitarian.

Liveness. Next, we show that the Milkomeda rollup that employs the se-
quencer mechanism described in Section 4.3 satisfies liveness.

Theorem 10. The Milkomeda rollup satisfies liveness with probability 1� (e�
u) · au, where e 2 N is the number of slots in an epoch, a 2 [0, 1] the adversarial

threshold, and u e the liveness security parameter.

Proof. To show the Milkomeda rollup satisfies liveness we must show that there
is a finite upper bound of blocks u on the L1 within which a transaction that is
submitted in the rollup will be included on-chain and thus executed.

We assume that active (or correct) sequencers will include all pending trans-
actions. Since rational validators will always be active due to individual ra-
tionality (Theorem 8), it is enough to bound the expected number of slots for
having a correct sequencer. With any adversary controlling less than half the
stake, the expected number of slots for having a correct sequencer is two, while
bounding the existence of a correct sequencer with a probability dependent on
the epoch length e can be derived by Lemma 3. We note that from the same
lemma we can deduce that for large enough security parameter u (dependent
on e), no party can control more than u consecutive slots, so liveness will not
be violated.

15

4.6 Elective features and alternatives

Fully-adaptive adversaries. To defend against fully adaptive adversaries,
we can employ VRFs for the sequencer election, among the validators that are
responsible for each epoch. In particular, we may employ the cryptographic
sortition of Algorand [GHM+17]. However, this solution means that there will
be some empty slots and some with multiple leaders which may require more
rigorous analysis to show liveness.

Locking the stake. In our proposal, the stakeholders lock their stakes only
during the auction and at the final stage of each epoch. This feature allows
stakeholders to participate in the rollup with very low opportunity cost and
hence motivates the participation of all L1 stakeholders. However, this design
choice bears some drawbacks.

First, it enables an adversary to loan stake to break the security threshold;
this attack is out of the scope of this work, as rational agents would never loan
such amounts but instead participate in the protocol themselves. Nevertheless,
it is an attack vector that can be mitigated if the validators keep their stake
locked during the entire epoch.

Second, entering and exiting the rollup is only allowed during the change of
an epoch where the safe exit protocol operates. This allows us to separate totally
the liveness from the bridging of the protocol, which makes our analysis under
rational players more approachable. We can, however, design a protocol where
parties may leave and join the rollup on demand and not only during specific
time periods. We anticipate that this approach would require sequencers to play
an active role in the bridging of the protocol. In this case, the stake should be
locked throughout the execution for accountability purposes and a composable
incentive analysis of the sequencer and safe exit protocols would be needed to
show bridging.

16

5 Safe Exit

In this section, we investigate potential protocols for implementing the safe exit.
First, we provide an ideal safe exit protocol and prove the liveness and bridging
properties of the ideal protocol. Then in Section 5.2, we provide a realization
of the ideal protocol under the assumption of an honest supermajority among
the elected validators. In Section 5.3 we examine the case where the validators
are rational, and indicate that designing a safe exit protocol under rational
validators may be impossible7. In the remaining sections, we discuss possible
ways to circumvent the implied impossibility and design a safe exit protocol
secure under rational validators.

5.1 Ideal safe exit

A safe exit protocol has the following functionality: it takes as input the request
of a client C to exit the rollup along with the ordered rollup transactions T , and
returns a state tC . tC is the correct state that C can leave the rollup, i.e., the
state that would be derived by any correct executor of all transactions T with
respect to C.

Suppose there is an oracle O that realizes the aforementioned functionality,
that is, O(C, T) = tC , where C is an existing client of the rollup, T the rollup
ledger (ordered list of transactions), and tC is a state that is consistent with the
language of the L1. Whenever a client wants to exit the rollup, the client calls
the safe exit oracle and exits the rollup in the returned state.

Given this oracle, we will show next that the Milkomeda rollup is secure
under our model. In the following sections, we will discuss various directions to
realize such an oracle.

Security analysis. We now show that given a safe exit oracleO, the Milkomeda
rollup is secure, meaning it satisfies liveness and bridging.

Theorem 11. Given a safe exit oracle O, the Milkomeda rollup satisfies bridg-

ing for w = e.

Proof. Any participant can enter the rollup at the beginning of a new epoch.
Moreover, any client that wants to leave the rollup may call the safe exit oracle
at the end of each epoch. The oracle always returns the state of the client
that an honest client would report, i.e., in accordance with the rollup ledger T .
Hence, bridging is satisfied for w = e.

Theorem 12. Given a safe exit oracle O, the Milkomeda rollup satisfies live-

ness.

Proof. Directly derived from Theorem 10, as the safe exit protocol does not
a↵ect the liveness of the rollup.

7The analysis is not exhaustive, but it covers all known approaches. We use it as an
indication of what is feasible with the methods that are known so far.

17

5.2 Safe exit under honesty assumptions

We first show a simple way to realize a safe exit oracle under honest superma-
jority assumption. We then discuss the case where 1/3 of the validators are
honest.

The protocol. A simple safe exit protocol that satisfies the desiderata is as
follows: When a client wants to exit the rollup at the end of an epoch, the client
must provide the smart contract with at least 2/3 of the validators’ signatures.
Then, the client can exit the rollup on that state. This protocol realizes the safe
exit oracle.

5.2.1 Honest supermajority

It is straightforward to see that assuming an honest supermajority, i.e., 2/3 of
all validators, guarantees liveness and bridging.

Liveness. Liveness is guaranteed as long as one honest validator is chosen to
act as a sequencer within u blocks. Assuming 2/3 honest validators makes the
probability of breaking liveness (i.e., electing malicious validators for u consec-
utive blocks) reasonably small (cf. Theorem 10).

We note that proving liveness in this setting is straightforward as no argu-
mentation for rational validators is necessary.

Bridging. Bridging is satisfied as the protocol always returns the correct exit
state upon request within e blocks. Specifically, since 2/3 of the validators
are honest, they will always sign exit transactions correctly (i.e., allowing users
to exit the rollup with the correct amounts of funds) and, equivalently, the
malicious (1/3) validators cannot produce a valid signed exit transaction.

5.2.2 Honest 1/3

Assuming 1/3 of all validators are honest guarantees liveness but does not guar-
antee bridging.

Liveness. Liveness is guaranteed if an honest validator is elected as sequencer
within u blocks. Since now 1/3 of all validators are honest, meaning that 1/3 of
all the sequencers are honest either the probability of violating liveness increases
(but not significantly – cf. Lemma 3) or the security parameter u must increase
(to maintain the same level of security). In any case, liveness will be satisfied.

Bridging. Bridging, however, is not guaranteed. Specifically, since the honest
validators control only 1/3 of the votes for the exit protocol, a coalition of more
than 1/3 (up to 2/3) of validators can block (i.e., not sign) any exit transaction
they choose. Nonetheless, a valid exit transaction has to be signed by at least one
honest validator. Therefore, no malicious coalition can violate the correctness

18

conditions for exiting, i.e., a party cannot exit the protocol with more than
the appropriate funds. Interestingly, the safety aspect of bridging cannot be
violated but instead the liveness aspect of bridging may.

5.3 Impossibility of rational security without fraud-proofs

In this section, we show that bridging the rollup with the L1, i.e., designing a
safe exit protocol, that is secure under rational validators is impossible without

any notion of fraud or validity proofs.
The challenge lies in the fact that the rollup operations are not recognizable

by the L1 language and thus the L1 consensus participants, which we will call
the L1-validators8, cannot verify if a state is correct or not according to the
rollup state transitions (aka transactions). For instance, the Milkomeda rollup
allows for EVM computations while the underlying chain it is deployed on (e.g.,
Algorand) is not EVM-compatible, hence the Algorand validators cannot eval-
uate the exiting state of a Milkomeda client.

Naturally, the first idea is to leverage the validators9 to vote on the exit state
of a rollup client (as described in Section 5.2), encourage them to participate via
rewards, and disincentivize them to cheat via slashing. However, the slashing
must be initiated either by the client exiting the rollup (cheater) or the other
validators, and the scheme should be secure, such that no party loses money,
e.g., via bribery attacks. In this section, we show that any scheme that only
relies on monetary incentives, rewards, and punishments, is not secure under
rational validators.

Bridging attack. Suppose there is a safe exit protocol, where the realization
of the safe exit oracle is done by the elected validators or a subset thereof,
denoted V . This means that the correct state for any address that exits the
rollup is determined by the set V under a pre-specified rule R, denoted RV . For
instance, the correct exiting state may be the output of a consensus among the
V validators, or the state that is signed by the majority of V , etc. All these are
di↵erent rules that realize the safe exit oracle, RV (C, T) = tC for any client C

that wants to exit the rollup.
Note now that there is no way to prove fraud or validity of an exit state to the

underlying L1. This means that the “truth” is indeed determined by the rule RV

and no one can dispute it, since the fraud is not provable. Allowing disputes that
cannot be verified creates the opposite problem of disputing truthful statements.
Therefore, the set V has total control over the “truth” of the rollup, i.e., the
exit state of any client. This means that the validators V can create a multisig
address and a smart contract on-chain that divides the earnings of this address
equally among them. Then, they may enter with this address the rollup as client
C. This must be allowed otherwise the bridging property is violated. Then, C

8L1-validators are di↵erent than the validators that are the elected rollup operators.
9We assume clients are not part of this mechanism since they have the same access with

the validators but no locked stake that may be slashed for misbehavior.

19

requests to exit the rollup with all the money of the rollup M (or any maximum
amount allowed). Regardless of the selected rule, the set V outputs tC = M in
total agreement and exits the rollup with the total amount. Note that, no one
can prove fraud occurred, hence the validators will leave with their stake intact
as well as their share of the rollup money.

This attack demonstrates that a naive realization of the safe exit protocol
under rational parties is vulnerable to bridging attacks. Moreover, it is indicated
that no protocol can be secure without some notion of validity-proof or fraud-
proof if the exit rule is determined solely by the validators of the rollup. The
intuition behind this impossibility stems from the typical operation of rollups
that inherit their safety from the blockchain. Removing this guarantee leaves
the rollup vulnerable to bridging attacks. This fact also indicates that possible
solutions may involve the L1-validators either via the L1 consensus or by cre-
ating some notion of fraud-proof that is understandable to the L1. In the next
sections, we explore various such directions to bypass this impossibility.

5.4 Safe exit via witness encryption

In this section, we explore the idea of using witness encryption to circumvent
the impossibility of Section 5.3.

Consider an NP language L ⇢ {0, 1}⇤ with an e�cient witness relation R

(by definition, statement x 2 L , 9w : R(x,w) = 1). A witness encryption
scheme allows one to encrypt a message in M with a statement such that it can
be decrypted with a corresponding witness:

8m 2 M,Pr[Dec(Enc(x,m), w) = m] = 1

For our application, we set xP,R to be “there exists a series of actions under
which P has committed fraud against R” (for a suitable definition of “fraud”,
expressed in EVM) – a witness would be such a fraudulent series of actions.
When joining the rollup, P encrypts her private key (which carries her coins
at the AVM level) with R’s public key and then witness-encrypts the resulting
ciphertext under xP,R to obtain C. C is sent to R, who can decrypt it and
punish P only if the latter commits fraud.

At a high level, the exit protocol is as follows. A party P asks to exit. This
starts a timelock, within which other parties may prove fraud. If the timelock
expires, P can unilaterally exit the rollup with its fair share of coins. The low-
level exit mechanism is to be determined but can copy existing rollups and/or
commit-chains in a straightforward manner.

Open problems:

• Avoid the need for one witness encryption per counterparty while still
ensuring that the defrauded party is the one to be compensated with
the fraudster’s coins. Otherwise, O(n2) ciphertexts are exchanged and
interaction with all existing parties is needed when new party joins.

• Ensure that the encrypter encrypts the correct thing – some kind of “ver-
ifiable” witness encryption is needed for this.

20

5.5 From EVM to AVM

One possible avenue is to investigate the di↵erences between the expressiveness
of EVM and AVM. The goal here would be to build a mechanism that extracts,
from EVM-based contracts, AVM-compatible fraud proofs. This would allow
to circumvent the impossibility of Section 5.3 and provide an incentive mech-
anism for safe exit. This is one of the currently leading directions of research.
Nonetheless, such a mechanism would not be generic, i.e., L1-agnostic like the
other alternatives, but would be tailored to AVM-compatible ledgers.

5.6 Leveraging Ethereum

One possible solution to the design of a safe exit oracle is to leverage Ethereum.
This solution demands the rollup operators/validators hold stake in both the
rollup’s L1, e.g., Algorand, and Ethereum. The initial auction would take place
as described in Sections 3, 4 in the main chain of the rollup, let this be Algorand.
Then, the sequencers will publish their data as described in Section 4 on the
Algorand blockchain. At the end of the epoch though, the elected validators
will be asked to lock their stake in Ethereum and in case anyone exits on a
fraudulent state a fraud-proof will be submitted within a timelock on Ethereum
and slash the validators responsible for the fraud. The exact design for this
solution is still to be determined.

There are many open problems such as:

• Determine and minimize the relayed information across chains.

• Determine the minimum number of parties in the rollup that must act
as light clients on Ethereum. Can we improve this by leveraging other
techniques, such as super-light clients?

• At the current design the validators must hold stake in both chains, which
is a heavy requirement. Can we enable some type of loan in a secure
manner in order to accommodate the liquidity on Ethereum, and if slashed
claim their funds on Algorand?

5.7 Leveraging the L1-validators

In this section, we describe a solution that circumvents our impossibility by
involving the L1-validators in the rollup operation.

In contrast to the proposed solutions so far, the sequencers must now verify
the transactions, so only valid rollup transitions are included. The L1-validators
only include valid rollup transactions, hence they also validate the ordering of
the sequencer. If the sequencer and the L1-validator both commit fraud, the
next L1-validator will fork out the block of the malicious L1-validator. Hence,
the current L1-validator will not include fraudulent/invalid rollup transactions.
Instead, the L1-validator will slash the sequencer and claim his reward.

Some remarks and open questions on this approach are:

21

• This solution changes altogether the proposed construction as the se-
quencer is now responsible for publishing only valid data and therefore
may tamper with the bridging of the rollup. In our constructions so far
the sequencer could only interfere with liveness, which allowed a clear
separation of operations and a simpler analysis.

• To prove that the next L1-validator will fork out the fraud block of the
main chain in a rational setting, we have to show that the expected reward
will drop if at least one future L1-validator is honest and may fork out his
block.

• The slashing of a sequencer awards the L1-validator his stake in case of
fraud. However, if the protocol is designed naively other L1-validators will
exclude the current block to get the slashed amount themselves. This is
the same problem with transactions with very high fees. To address this
issue, we demand the sequencer be able to publish only on a specific block
height and subsequently get punished by only one specific L1-validator.

• This approach meddles with the main consensus incentives. Is it enough
to assume the underlying chain has an honest majority or shall we study
the existing incentives of the chain? Are there any major issues or attack
vectors introduced by our involvement?

22

References

[CPR19] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. An ax-
iomatic approach to block rewards. In ACM Conference on Ad-

vances in Financial Technologies, AFT ’19, page 124–131, New
York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3318041.3355470.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proceedings of the 26th Symposium on Op-

erating Systems Principles, SOSP ’17, page 51–68, New York, NY,
USA, 2017. Association for Computing Machinery. doi:10.1145/
3132747.3132757.

[RL11] Derek D. Reed and James K. Luiselli. Temporal Discounting,
pages 1474–1474. Springer US, Boston, MA, 2011. doi:10.1007/
978-0-387-79061-9_3162.

23

